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Notes

Quiz 1 score can be found in Brightspace

Course website: https://www.saigianzhang.com/COURSE/

| use Brightspace to post announcements and grades

| provide an online zoom meeting option for people interested in

auditing the class. However, enrolled students are required to attend in
person unless special condition.

e A suggested reading list which contains interesting papers can be
found here.

e Discussion groups has been created in the Brightspace

e Course email: efficientaiaccelerator@gmail.com
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https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/98290357807?pwd=3AQiwdtdVatqVdRgAe3tURfvvtcUAX.1&jst=2
https://docs.google.com/spreadsheets/d/14C0DwQ5g_wLgQQe9PPRQOfT0sHmLNOq-df5Xewft_lI/edit?usp=sharing

Quiz

During the training of a linear (fully connected) layer in a multi-layer perceptron
(MLP), which step typically requires more computation, the forward pass or the
backward pass? Why?
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Fully-connected layers (Linear layers)

_______________________________
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Recap

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures

VGG
ResNet
MobileNet
ShuffleNet
SqueezeNet
DenseNet
EfficientNet
ConvNext
ShiftNet

o CNN architectures for other vision tasks
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Topics

Transformer basics

Bert

Vision transformer
Large Language Model
Self-supervised learning
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Transformers

e Proposed in "Attention Is All You Need" in 2017

e The vanilla Transformer is a

sequence-to-sequence model and consists of

transformer blocks.
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Attention Is All You Need

Ashish Vaswani® Noam Shazeer* Niki Parmar”* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones® Aidan N. Gomez* ' Lukasz Kaiser*
Google Research University of Toronto Google Brain
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Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Transformers

Z
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e Each transformer block includes a

self-attention layer and a feedforward layer. [ '—aye|m°rm ]

X
Self attention block Feed forward block
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Transformers: Transformer Block

Linear

Block N

Feedforward Block 2

layer (FFN)
Block 1
Self-attention ./ Positional

layer (SA) encoding
|

| 7 [Embedding

Transformer block
4 N
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Transformers

%1010

(e}

Input

N
T

Computations
N

L 256 1000 2000
. ) ) ) Sequence length
e The input contains three dimensions:

o  B:batch
o L:token length
o E:embeddings

e The amount of computation is closely related to the token length L.

3000

4000

e Longer sequences are disproportionately expensive because attention is quadratic to the sequence

length.
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Self-Attention Block

e The input x is first normalized, then the first step in calculating
self-attention is to create three vectors from the input x’, denoted

as: Query (Q), Key (K), Value (V).

O
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Example

13 ” 128
| love AI” —3[C1

(3128)  (3.128)  (3.128)
QEE K& Vi

1 1 1
Step 1 [ linear } [ linear } [ linear }
| I:I| ]
(3.128)
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Self-Attention Block

O

e The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.

O
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QKT—(B,LxE) x (B,ExL) — (B,LxL) (BL%E)
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Example

13 ” 128
| love AI” —3[C1

(3128)  (3.128)  (3.128)
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I I I
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—
(3.128)
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Step2 o K — 3|aKT
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Self-Attention Block

Softmax

[ Sclale ]

o I
e Scale and normalize the score using softmax.
o  Softmax(QKT) — (B,LxL)
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Example

13 ” 128
| love AI” —3[C1
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[ I |
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Step2 o K — 3|aKT
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Self-Attention Block

but

’t -

remains

involved A

in

programs

with -

O amr

corp.

e Scale and normalize the score using softmax. ]

american -
O SOftmaX(QKT) —> (B, LxL) airline::
and -
delta
air -
lines
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Self-Attention Block

e Multiply each value vector by the softmax score.

(©)
(@)
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Softmax(QKT) » V
(B.LxL) x (B, LxE) — (B,LxE) (BL%E)
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Example

13 ” 128
| love AI” —3[C1

(3128)  (3128)  (3.128)

QEm K ViEm S e
T T T Step 3 3|QKT softmax .
Step 1 [ linear 1 [ linear 1 [ linear 1
| | | 3 128 128
L1
(3128) Step 4 3. 3* —3[_]
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Step 2 qmmm K — 3|aKT
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Self-Attention Block

e Pass the result to the linear layer, sum with the input.
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Example

13 ” 128
| love AI” —3[C1

(3128)  (3128)  (3.128)
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Multi-headed Attention

Multi-Head Attention

e Q, K, Vtensors are broken into multiple components along the embedding 4
dimension. Linear
o (BLE) x (ExE) > (BxLxE) f
o (BLE)— (B,MLEM) — (B,M,L,D), where D=E/M Goncat
e All the following operations can be performed independently over each head M. vy
o QKT—(B,M LxD)x (B,M,DxL)— (B, M, LxL) A :
o Softmax(QKT) —» (B.M LxL) Scaled Dot-Proauct JJ& i
o  Softmax(QKT) x V — (B,M,LxL) x (B.M,LxD) — (B,M,LxD) — (BxLxE) Attention
A A A

Linear Linear Linear
E /2 r)] rﬂ
i 7

Vv K Q

E/2

L
22
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Example
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Multi-headed Attention

e Why

O

we need multiple heads?

Multiple attention heads in transformers are used to enhance the
expressive power and modeling capabilities of the network.

By using multiple attention heads, transformers can capture
different types of dependencies and relationships between words
or elements in a sequence.

Having multiple heads allows the model to perform attention
calculations in parallel, which can improve computational
efficiency.
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Multi-Head Attention

s

Linear

1

Concat

A

Scaled Dot-Product h
Attention

At. Ab‘

IA IA
Linear Linear l}

K Q

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural

information processing systems 32 (2019).
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Feed

Forward Layer

Z : :
e The two linear layers are big:
—d—) o (Ex4E) and (4EXE), E can be large (e.g., 4096)
o This is expensive to implement.
e GelU:

0 GeLU(z) = z®(z)
®(z) = P(y < z), whereY ~ N(0,1)

GELU activation function

linear
[ LayerNorm ] 2]
Y -

NYU SAI LAB

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units

(gelus)." arXiv preprint arXiv:1606.08415 (2016).
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linear

[ LayerNorm ]

]

Y
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Step 6

128

“I love AI" —3C]

(3512)

[ ]
[ ]
(3.128)

Step 7

(3512)

]

(3512)

(3,128)

(3512)
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Layer Normalization

Step 1 Step 2
- Mo, 60 E
M1,61
L. X L X’
ML-1,8L-1 -
X' = XU;“ Foreachrel  Ye=a.X,+ B. ForeachecE

e LayerNorm is applied on each input sample.
e Both a and 3 have a length of E.

NYU ‘SAI LAB Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450
(2016).




Layer Normalization

Step 1 Step 2
- Mo, 60 E
M1,61
L X L X’
ML-1,8L-1
X' = XU;“ Foreachrel  Ye=a.X,+ B. ForeachecE

e |ayer Norm does not store the running mean and running variance, so during the
inference time, the mean and variance need to be computed.

NYU ‘SAI LAB Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450
(2016).




RMS Normalization

Step 1 Step 2
E E
L X L X’
X /
Xr = ZZX,% Ye = ané
L

ForeachreL For each e<E

e The experiments demonstrate RMSNorm achieves similar and even better results
than LayerNorm.

Zhang, Biao, and Rico Sennrich. "Root mean square layer normalization." Advances in Neural Information Processing

NYU SAI LAB| systems 32 (2019).
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Transpose & Reshape

End-to-End GPT-2
Latency Breakdown

10
8 @ Others
Attention
»
- 6
(&)
5
w® 4
-
2
0

TitanXp Xeon Nano
GPU CPU GPU

Attention Latency Breakdown

MatMul only accounts

for 27‘% Ia‘tency Attention
Prob x V
x K
1%_ P S, 10.6%
] Transpose
Split «& Softmax
Heads & 33.3%

Concat &
Reshape ,
39.6%

Fig. 2. End-to-End GPT-2 latency breakdown on various platforms, and
attention latency breakdown on TITAN Xp GPU. Attention accounts for over
50% of total latency. Data movements account for 73% of attention latency.

Reshaping operation

(B, M, L, E/M)

(B, L, E)

Transpose operation

(B, L, E) (B, E, L)

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head 30

NYU SAI LAB pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.




Transformers: Word Embedding

NYU SAI LAB

Transformer block

Feedforward
layer (FFN)

Self-attention

—_I_—
‘[ Positional

layer (SA)

Block N

Block 2

Block 1

encoding

I J

[Embedding |
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Transformers: Word Embedding

e For each word, we can convert them into a one-hot vector.
e \We use the embedding layer to encode these one-hot vectors, which acts like a

trainable lookup table.
e Dictionary: {are, is, machine, good, awesome, learning, love, ....}

‘| love|machinel|learning”

000100000 |

One hot vector
Vocabulary size = 10

nn.embedding | ——> Vector of

(1, 4096)

One hot B
vector
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Buippaqua
PIOAA

Buipoous
|euonisod

Input to

' — transformer

blocks

Mikolov, Tomas. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
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Transformers: Positional Encoding

NYU SAI LAB

Feedforward
layer (FFN)

Self-attention
layer (SA)
|

N\ .
Block 2
N T

Block N

Block 1

/[ Positional

encoding

Transformer block
e N\

Embedding
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Transformers: Positional Encoding

e One thing that’s missing from the model as we have described it so far is a way to account for the order of
the words in the input sequence.

e Transformer adds a vector to each input embedding. These vectors follow a specific pattern that the model
learns, which helps it determine the position of each word.

PE(pos,2i) - Sin(pOS/loooozi/dmodcl)
PE(pos,2i+1) = COS(pOS/lOOOOQi/dmoch)

Position

e Forlong sequences, the indices can become quite large.
Normalizing these index values to a range between 0
and 1 can cause issues with variable-length sequences,
as each sequence would be normalized differently.

e pos is the positional of the token, i is the index of the embedding.
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Case Study: BERT

NYU SAI LAB

Bidirectional Encoder Representations from Transformers.

BERT is designed to understand the text by considering both the words before and after it.
BERT consists of transformer encoders and takes the entire sentence as the input.

BERT can not generate new text.

NSP Mask LM Mask LM \ /@ MAD Start/End SpaN
P &*

BERT BERT

Eip- MEnN- .
Masked Sentence A > Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair j Question Answer Pair

Pre-training Fine-Tuning
Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

Bl EEE]- E
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Case Study: BERT

e Use the encoder’s output embeddings as input features for downstream tasks.

e Represent a sentence as a vector for semantic similarity, clustering, or search.

e The pre-trained BERT model can be finetuned with just one additional output layer to create
state-of-the-art models for a wide range of tasks.

NYU SAI LAB

KQ Mask LM Mask LM \ /m MAD Start/End Spax
P S &*

BERT BERT
] EllE=E]- G

Masked Sentence A > Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair / Question Answer Pair

Pre-training Fine-Tuning

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint 36
arXiv:1810.04805 (2018).



BERT

e AJ[CLS] token is inserted at the start of every sequence, and the two sentences in the
sequence are separated by a [SEP] token.

e The final hidden state corresponding to this token is used as the aggregate sequence
representation for classification tasks.

e |n addition to the positional information, BERT contains a segment embeddings to
differentiate the sentences.

7 N & B £ B A N g N 7 B 4 ’ N
Input [CLS] my dog is [ cute ] [SEP] he [ likes ][ play ] ##ing ] [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Ehkes Eplay E==|ng E[SEP]
& + + + + 3= 3 3= + -+ +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + +* + + +
Position
Embeddings Eo El E2 E3 E4 ES E6 E? E8 E9 E10

NYU SAI LAB




BERT Pretraining

e BERT is pretrained using two unsupervised tasks:

©)

©)

“New York University is a great school.” “New York is a great school.”

NYU SAI LAB

Masked Language Modeling (MLM)

m We simply mask some percentage of the input tokens at random, and then

predict those masked tokens.
Next Sentence Prediction (NSP)

m Given two sentences, A and B, predict whether B is A’s following sentence.

3
Bert

“University”

38



Downstream Tasks

e For text classification task, Bert will return a binary

output.
o Single sentence task (SST-2): The task is to predict the (——
sentiment of a given sentence. . | Blockt2
e The input may contain a single sentence, or a pair of
sentences. ' Block 2
o  Similarity and Paraphrase task§ (MRPC): Is the second Blol:k1
sentence a paraphrase of the first sentence.

NYU SAI LAB n




Downstream Tasks

Start position End position

Context paragraph Question
i I i “Similarly, movies and television often revert to “Who wrote William Tell Overture?”
012 383 t 012 383

standard, clichéd snatches of classical music|
to convey refinement or opulence: some of the
(384, 2) most-often heard pieces in this category
’ include Bach’s Cello Suite No. 1, Mozart's Eine
kleine Nachtmusik, Vivaldi's Four Seasons,
Mussorgsky's Night on Bald Mountain (as
orchestrated by Rimsky-Korsakov), and

(384, 2)

Linear Rossini's William Tell Overture.”
(384, 768) Answer
Bert Classical_music (12, 13)
model

e In Question Answering tasks, an input sample consists of a context paragraph
and a question with a total length of 384.

e The goalis to find, for each question, a span of text in the context paragraph
that answers that question.

(384, 768)

NYU SAI LAB e BERT produces the answers by generating the start and end positions of the 4o

text span.



BERT Performance

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 849 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 823 56.0 75.1
BERTgasE 84.6/83.4 712 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

e BERT can achieve better performance over GLUE datasets than GPT-1.

NYU SAI LAB
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Efficient Self-Attention Design

e FEFA Seeait
1] ]
5 8 a5 Epaceinl
O] 1 O]
E [ e
- 1] L]
. H B = 1] in = [
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD
Sparse Transformer (2019) Longformer (2020)

o
T .

L I Y v R EEEEE Sl e e
I
I
|

|
| |
= T,,

Original Strided Fixed

Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-document transformer." arXiv preprint

NYU SAIl LAB| arxiv:2004.05150 (2020).

Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).



Efficient Self-Attention Design

13 ” 128
| love AI” —3[C1

(3128)  (3.128)  (3.128)

QE=E K3 VEEE 3 Scale and Prunin
g
T T T Step 3 3|QK" Sofmax “softmax . E
Step 1 [ linear } [ linear } [ linear }
| | | 3 128 128
L1
(3128) Step 4 3E 3* —3[_]
(3128)  (3.128) 3

Step 2 qmmm K — 3|aKT
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Token Merging

Linear

Transformer block

Block N

Feedforward
layer (FFN)

Self-attention
layer (SA)

S

Block 2

Block 1

Positional
encoding

Embedding

Pooling layer will
reduce the number

of tokens.

“IThis| show

1s||lgreat]”’

U

This show

is great

e \We can reduce the number of tokens by merging them together.

NYU SAI LAB

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).
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Token Merging

Max .
pooling i if (|xi] >= [yi])
X 2y — > yi otherwise

e X,y are two token Average
vectors with length of E X pooling zi = (xi + yi)/2

NYU SAI LAB

Interleaved Xi iis odd
X merging Zi = .
y —— > 7 yi otherwise

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).
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Topics

Transformer basics

Bert

Vision transformer
Large Language Model
Self-supervised learning
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Vision Transformer

e Transformer architecture can also be applied over the computer vision tasks.

(B, 197, 768)

(B, 197, 768) (B, 197, 768)
nn.param B 197 768)

(B, 196, 768)

(B, 768, 14, 14) Block
:j
(B, 197, 768)
224 u

224

NYUSAILAB|  (part 1) (part 2)

(B, 1000)

Linear

(B, 768)

(B, 197, 768)

layernorm

(B, 197, 768)

(part 3) “



Vision Transformer

e A special placeholder is introduced to aggregate global information about the whole image.

(B, 197, 768)
(B, 197, 768) .
nn.param (B, 197, 768) Input Feature Filters
(B, 1, 768) maps 3 7
Special token ’—L_ Output Feature
(B, 196, 768) 3 (16 I maps
el 16 768 .
(B, 768, 14, 14) on, 4 |

224 | L7e8 |:> 14

3 224 ; 14
224 y—?

NYUSAILAB  (part 1) Padding = 0, stride = 16 “



Vision Transformer

224

224

16

16

16

16

NYU SAI LAB

Input Feature

maps

224

3
224

Q
o
)

Filters

Padding = 0, stride = 16

~

Transformer architecture can also be applied over the computer vision tasks.

Output Feature

768 .

768 [ 14

196

maps

14

v
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Vision Transformer

® Animage CxHxW is divided into patches of CxPxP. P is 16x16 in the previous example.

e They are then flattened and linearly projected to E (e.g., 768) dimensions for a sequence of (H/P) x (W/P)
tokens.

Vision Transformer (ViT)
e Aclassification

MLP [CLS] token is
Head inserted at the start

of the tokens.

) PP 9000

[ Linear Projection of Flattened Patches ] Transformer Encoder 1
> I
TR | U] ] J— 4@4@54@5@&44@ 196
AT had | imbedding
m ﬁ E :cLl’:ss]]“y;t‘{l.Jlu.ng Lmear Pro;ecuon of Flauened Pdl(.heb
SEE 768
ﬁ%g—'.i.W§QWWE

U 8 I L Dosovitskiy, Alexey. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint o
NY A AB arXiv:2010.11929 (2020). s




Vision Transformer
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ResNet-50

0

ViT-B/16

ViT-L/16

ViT-H/14




Vision Transformer

90
< s e Accuracy increases as the training
% - dataset grow.
- ® e ResNet 50 can achieves an accuracy
g I l between 75-80% on ImageNet.
= 80 ‘ e ViT does not strike an efficient
i balance between parameter count
% = BiT ViT-L/32 and accuracy when dataset is small.
5D *-1:.- e ViT-B/32 ViT-L/16
& ViT-B/16 ViT-H/14

701 : ;

ImageNet ImageNet-21k JFT-300M

Pre-training dataset

NYU SAI LAB -




Topics

Transformer basics

Bert

Vision transformer
Large Language Model
Self-supervised learning

NYU SAI LAB
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Large Language Models (LLMs)

G

P ”~
7 (D GShard 7 mTs Open-Source
— 2019 —
S 2021 /£ ﬂ?ﬂ PanGu-a labs Jurassic-1

GPT-3 @/ s o €2 PLUG YA¥s® HyperCLOVA
= G 2 8

Ernie 3.0 %3¢ \ — G LaMDA

BLOOM O_— - J AT CPM-2

Codex &) MTNLCE / \ s o Gopher o AlphaCode

WebGPT@ ™ & q GLaM o Chinchilla

s@ PanGu-X

2022 HUAWE!
/ d uL2 O Sparrow

'C Bard
a PaLM a Flan-T5 \, o

Ernie 3.0 Titan ';.:'
InstructGPT @

A~
- = 7 \
GPT-NeoX-20B \9 D)

mT0 '~ CodeGenO Tk-Instruct AIZ\ / /_ 5 Flan-paLM @ ERNIE Bot
BLOOMZ % oM (@) OFT /"-IH it [ ll,LaMA
Galatica 0O AlexaTM g / \ 2023 — I-%
OPT-IML  (0X) ChatGPT GPT-4@
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Transformers as a Generative Al Tool

“NeW”
i
o~ .
Transformer \) Processing Transformer
i |
“Where 1is new york “Where As
university?” new york

university?”

“York”

!

Transformer

O Generating

] |

“Where 1s
new york
university?”

Step 1: Prefilling Step 2: Decoding

NYU SAI LAB
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Transformers as a Generative Al Tool

Decoder 12

Decoder 3

FEN

Decoder 2

SA

Decoder 1

ML
!

<BOS>
Round 1

—>

IIIIIII

¥
i

s
M

ML
Round 2

awesome T

f

<EOS>

f

(w]

(o]

!

!

> is
Round 3

e Each token is generated in an autoregressive manner.

> awesome
Round 4

NYU SAI LAB Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9. 56




Transformers as a Generative Al Tool

Reshape

~\

NYU SAI LAB

[ Softmax ]
Scale
[ KT ]
Qmm K [mm V |
[Reshape] [Res?ape] [Reshape]
| Ilnear ] [linear | | Ilnear )

S

FFN

(Normalization |

\

\

s

SAI

4[Normalization |

\

4

[ Linear& |
| Softmax |

A

Decoder

A

Decoder

A

Embedding |

N

A
INnput

e \We need to buffer the v and k for later usage.
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GPT-2: Prefilling

A

Linear &
Softmax

_IZV cache

s | i

Decoder -~

Decoder

+ '
Embedding

\ A J
1

“How are you”

Bl Key vector for ith token in jtn layer
(1xXE)

I \
ik k.2 ) A {) Bl Value vector for ith token in jtn layer

(1xE
)

e During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the
KV vectors into the memory.

NYU SAI LAB
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GPT-2: Decoding

4 T N 4 T \
[ Linear& | [ Linear &
| Softmax | | Softmax
kis ki A | (- | T
Decoder -~ . Decoder
; L]
Decoder KV cache Decoder
ke ko [ | |\ — —
KV cache | £pbedding [ Embedding |
. é J . ? AJ
“How are you" “How are you”
Round 1

e During the decoding stage, LLM generates the responses in an autoregressive way.

NYU SAI LAB
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GPT-2: Decoding

am doing well
A A A
4 : 1 N ( : 1 ) well =TT ( : 1 N
Linear & doing (IR EEEE Linear & doing | i e N Linear &
am |mEEE Softmax am ||| Softmax am ||| Softmax
|| - /) || - /) || ——— /)
[ 1 | [ | [ 1 | [ | [ 1 | [ |
T T Decoder T T Decoder T T Decoder
] A ] A ] A
KV cache Decoder KV cache Decoder KV cache Decoder
a * N\ a * N\ a * N\
Embedding Embedding Embedding
. ) ) . ) ) . ) )
“How are you |” “How are you | am” “How are you | am doing”
Round 1 Round 2 Round 3
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GPT-2: Decoding

well good
A A
well ( Linelar & | ood ( Linelar & ]
doing (I ollgie}] | | | |
am ||| Softmax am ||| Softmax
! A ! A
Decoder Decoder
( * N ( *
KV cache Decoder KV cache Decoder
a * N\ a * 3
Embedding Embedding
. T J . T J
“How are you | am doing” “How are you | am doing”

e We can simply select the token with the highest score. But better results are achieved if

the model considers other words as well. So a better strategy is to sample a word from
NYU SAI LAB the entire list using the score as the probability of selecting that word. o




Why KV Cache Saves Computation?

e During the decoding phase, new tokens are continuously generated and must be
processed using the buffered K and V vectors to generate subsequent tokens.

e Without a KV cache, all previous K and V vectors must be recomputed, resulting in
significant computational overhead.

NYU SAI LAB
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Why KV Cache Saves Computation?

t

t

t

(e Q) O]

—x

e Given the input, the gL, ki, vL are first computed by passing through the

linear layers.
e After that, the ki, vi vectors (I=1

NYU SAI LAB

L-1) are also loaded from the memory.
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Why KV Cache Saves Computation?

e KandV are loaded from the memory, the g vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1...L) to produce the result AL,

NYU SAI LAB
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Why KV Cache Saves Computation?

e KandV are loaded from the memory, the g vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1...L) to produce the result AL,

NYU SAI LAB
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Why KV Cache Saves Computation?

1 TALL

e KandV are loaded from the memory, the g vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1...L) to produce the result AL,

NYU SAI LAB




Why KV Cache Saves Computation?

e Afterwards, the computed AL, (i=1...L) will then passed to softmax function.

softmax
=

e Then each element of AL will then multiplied with vi (i=1...L) and elementwise sum together.

NYU SAI LAB

67



Why KV Cache Saves Computation?

e Afterwards, the computed AL,i (i=1...L) will then passed to softmax function
e Then each element of AL will then multiplied with vi (i=1...L) and elementwise sum together.

NYU SAI LAB
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Why KV Cache Saves Computation?

A

ALL

E

b4 V EE>1I yEL |®

1

N

e Afterwards, the computed AL,i (i=1...L) will then passed to softmax function
e Then each element of AL will then multiplied with vi (i=1...L) and elementwise sum together.

NYU SAI LAB
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Deepseek V3

Cached During Inference
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NYU SAI LAB Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
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LLaMA

e |LaMA has a similar architecture as
GPT-2, with some minor differences: L=
o RMSNorm is used to replace § ;
LayerNorm
o SwiGLU ; :
o MLPs with gating § 1 Nx

with KV Cache
a® K®

| Self-Attention (Grouped Multi-Query Attention) |

v 1 © Rotar
f ' Positional Encodings
'

RMS Norm

Input

NYU SAI LAB Touvron, Hugo, et al. "Llama: Open and efficient foundation language models." LLaMA
arXiv preprint arXiv:2302.13971 (2023).




MLPs with Gating

e Alot of LLM models applies gated feed-forward network to replace the conventional FFN in the

Y
=
5
(]
Y
)
-~

®_> Wiown > Y

A
=
S

____________________________________

transformer.

NYU SAI LAB

Liu, Hanxiao, et al. "Pay attention to mlps." Advances in neural information processing systems 34 (2021): 9204-9215.
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How LLM is Trained?

e The loss function consists of two parts:
Ll(U) — E logP(ui|uz-_k, sssie 3 Mg 973 @)
“A newspaper article should contain these five main components: a headline, a byline, a lead/lede
paragraph, an explanation, and any other additional information.”
A newspaper article should contain these five main xxx “components”™  (GPT)
A newspaper article should xxx these five main components: a “contain”
headline, a byline, a lead/lede paragraph, an explanation, and contain™ (BERT)
any other additional information.
Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
NYU SAI LAB Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint 73

arXiv:1810.04805 (2018).



How LLM is Trained?

22X —

NYU SAI LAB

Text Task

prediction | Classifier Classification | Start | Text I Extract H——{ Transformer H Linear |

i

e Entailment | Start | Premise | Delim | Hypothesis | Extract |-—| Transformer H Linear |

@)
N

| Eoed Fornard I | Start | Text 1 | Delim | Text 2 | Extract |——| Transformer
Similarity = Linear
| Start | Text 2 I Delim I Text 1 | Extract | —>| Transformer

).

)

Multiple Choicel Start | Context | Delim | Answer 2 IEXtract

[ | Start | Context I Delim | Answer 1 | Extract |—>| Transformer |—>| Linear
Masked Multi !
Self Attention |-

——| Transformer |—-| Linear

Text & Position Embed | Start | Context | Delim | Answer N | Extract |——| Transformer |—-| Linear

BB = BafE) 3w Bl

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
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Vision Language Model

“An image of two
golden retrievers”

1

Language . :
model e AVision-Language Model (VLM) is an large model
that jointly processes from visual data (e.g., images,
JAA video) and textual data to understand, align, and
N generate multimodal content.
Embedding
“‘Describe

ext

2 the image”
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LLaVA

Text e . Fusion_ . e |In L!ava, ’Fhe visual encoder takes
i @ Y ()i the input images and produced
= ||z § ! the visual embeddings.

D Qo
— _C_L_IP_ — \/ 1 g 1 E o ?
{r N\ 7 1| N\ 9] o g
wn M | = = = |
HE&|=z8]"'|=z2 I| © = L
o = e e IC2J _—J1 e The visual embeddings and
Image {4 & HE {2 _————_—— - _
1gilez|1]18= x40 textual embeddings are
: S "3 : ~ 3 concatenated, which is then
\ J \\ y, . J
V- 7 forwarded to the fusion model.

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2023): 34892-34916.
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Topics

Transformer basics

Bert

Vision transformer

Large Language Model

Self-supervised learning for visual model

NYU SAI LAB
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Self-Supervised Learning

e Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within
unlabeled data to create pretext tasks, enabling models to learn meaningful
representations that can be fine-tuned for downstream applications.

“ ” - “Cat” -
Weight ~* Dog S * CC)
uped!gtet ‘) r * Pre "C__U' ( H d ”‘ ‘.(:U
Head ¢} C N =
- I < ‘» ( ' Y ©
Backbone 3 Bacﬁbone g
S G
) % N
ke -
E

NYU SAI LAB
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Self-Supervised Learning

e Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within
unlabeled data to create pretext tasks, enabling models to learn meaningful
representations that can be fine-tuned for downstream applications.

B 2 9 s
A _:g Heald(:)‘ g*
Weight .~ g ' ‘ GEJ
Pretraimng\)[Backbone] i_& Backbone (%',’[Backbone]
% ]
:

NYU SAI LAB
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Popular SSL Methods: Contrastive Learning

e Contrastive Learning is a framework in which models learn meaningful representations by
contrasting positive pairs (similar data points) with negative pairs (dissimilar data points),
encouraging the embedding space to capture semantic similarities and differences.

‘| MLP %—»E—
! mLp _.E—

Augmented Encoder Feature Projection Head
images () vector g(.)

Augmentation
i

Image x

SimCLR framwork. Image by author.

U 8 I L B Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
NY A A machine learning. PMLR, 2020.
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Popular SSL Methods: Contrastive Learning

o SN s R
S -
W o e 3

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

e The current augmentation approaches adopted by the Al community including random crop (with flip and
resize), color distortion, and Gaussian blur.

NYU SAI LAB o




Momentum Contrast SSL. (MoCo)

contrastive loss contrastive loss

iradient A Y ant ra 4 A
Y > q . k < \ v  / > q X k

q k q k

A :.} A A

encoder q encoder k encoder momentum
encoder
q k L
& T 5 i

e In the training process, only query encoder is updated, momentum encoder doesn’t change.
Ok < mbx + (1 — m)bq.
e Only the encoder is updated.

NYU SAI LAB He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2020.
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Knowledge Distillation with No Labels (DINO)

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

loss:
# gs, gt: student and teacher networks @ -Pp2 log P1 Q
# C: center (K) &

# tps, tpt: student and teacher temperatures sg
# 1, m: network and center momentum rates

3t parans < g pazens [ ]

for x in loader: # load a minibatch x with n samples

x1, x2 = augment (x), augment (x) # random views -

sl, s2 = gs(x1l), gs(x2) # student output n-by-K
tl, t2 = gt(x1), gt(x2) # teacher output n-by-K

ema
student ggg — | teacher gg
loss = H(tl, s2)/2 + H(t2, sl)/2

loss.backward () # back-propagate

# student, teacher and center updates e 9
update (gs) # SGD

gt.params = lxgt.params + (1-1)*gs.params
C = mxC + (1l-m)x*cat([tl, t2]) .mean (dim=0)

def H(t, s):
t t.detach() # stop gradient ( )
s softmax (s / tps, dim=1) DINO 2021
t softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean()

e During the backpropagation, only the student DNN is updated.

NYU SAI LAB e The teacher updates its weight periodically using the following formula:

gt.params = lxgt.params + (l-1)*gs.params



Masked AutoEncoder (MAE)

\[3 e The input image is masked, the
> I — unmasked image patches will be
| [ sent to the encoder.

e The decoder will infer the
masked portion of the image.

= encoder

= 1 %
L=+ dlI& — @l
masked i€masked

NYU 8 AI L AB He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on 84

Computer Vision and Pattern Recognition. 2022.




Self-Supervised Learning: Masked Autoencoder

NYU SAI LAB

original mask 75% mask 85% mask 95%

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.
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3 0 ViT -
QO o
* % Context encoder 2 Decoder
) 3 % @
224 x 224 x 3 <
=
] Loss
@
\ Layer > Target
N — | Targetencoder [— y ) g
. Norm b masking
224 x 224 X 3 viT
NYU SAI LAB Assran, Mahmoud, et al. "Self-supervised learning from images with a joint-embedding predictive architecture." 86
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.




